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Abstract

Superimposition of homogeneous strain on parallel folds is a potential mechanism for development of flattened parallel folds. Estimation

of flattening strain by existing graphical approaches requires a large number of angular and/or linear measurements. We propose a new

computer-based approach, which rapidly destrains a flattened parallel fold into a parallel fold with help of any of the commonly available

graphic software. This method is based on the principle that the magnitude of flattening directly relates to change in the inherent

orthogonality that exists between a tangent and an isogon, at any given angle of the limb dip, on the profile of a parallel fold.

Using six examples of flattened parallel folds, we show that the results of our destraining method are consistent with those yielded by other

existing methods. Besides estimating the flattening strain rapidly and involving a relatively low amount of error, our method also restores the

pre-flattening fold shape without any additional geometrical or numerical operation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural geologists have long recognized the signifi-

cance of geometric analysis of folds because it provides

important clues to the mechanism of folding (Ramsay, 1967,

pp. 386–411; Hudleston, 1973a; Bastida et al., 2003),

besides defining the precise shapes of the fold hinge zones

that commonly host petroleum reservoirs and saddle-reef

ore bodies. Buckling of a relatively competent layer,

enclosed in an incompetent medium, produces class 1B,

or parallel folds (Biot, 1961; Ramberg, 1963; Ramsay,

1967, pp. 372–377; Ghosh, 1993, pp. 252–264). These folds

are characterized by a unique orthogonal relationship

between the tangent and the isogon at any given angle of

the limb dip. Flattening, caused by the superimposition of a

homogeneous strain on a class 1B fold, results in thickening

of the hinge zone, thinning of the limbs and modification of

the fold shape into class 1C geometry. The extent of
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geometrical modification due to flattening is directly related

to the magnitude of the superimposed homogeneous strain.

Several graphical methods are available for the determi-

nation of magnitude of flattening. Ramsay (1962, 1967,

p. 413) uses the relationship between the limb dip angle a,

and the normalized orthogonal thickness, t 0a, for estimation

of flattening in class 1C folds. Hudleston (1973a) proposes a

graphical method, which is based on the relationship

between the limb dip angle a and, an angle f between the

isogon and the normal-to-the-tangent. Lisle (1992) suggests

a polar plot between the inverse thickness, 1/t, and the limb

dip angle a, which yields the required strain ellipse.

Srivastava (2003) gives a somewhat similar solution, but

his method is applicable only to truly concentric folds. None

of these existing methods restores the pre-flattening shape of

class 1C folds without the application of an additional step

that destrains the fold shape either by geometrical or

numerical technique.

In this paper, we propose an alternative method for

estimation of the flattening strain in class 1C folds. This

method, based on destraining by simple computer appli-

cation, gives the flattening strain and restores the pre-

flattening shape of the fold in the same operation. We test

the efficacy and the validity of this new method on six

examples of natural and numerically simulated folds, and
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compare our results with those obtained by other common

methods.
2. Destraining method

We assume that the fold to be analyzed develops as a

class 1B fold and it assumes class 1C geometry due to

superimposition of a post-buckling homogeneous strain

(XRYRZ), albeit a class 1C fold can also develop due to

simultaneous buckling and flattening (Hudleston, 1973b).

Our method makes use of two geometrical properties of

folds. First, in the class 1B folds, all the isogons are

perpendicular to their respective tangents. Second, flatten-

ing introduces an angular shear, due to which the

orthogonality between the isogons and their corresponding

tangents is changed, except at the limb dip, where the isogon

and the tangent parallel the principal axes of the strain

ellipse. The angle, d, between the tangent and the isogon at

any point in a class 1C fold is a function of the magnitude of

flattening, or axial ratio, of the strain ellipse on profile plane.

The proposed method destrains a class 1C fold into a class

1B fold by restoring the orthogonal relationship between

isogons and their respective tangents. The ratio, arc

length/half wavelength, measured on the restored fold

shape, gives buckling strain RB, provided the area remains

constant during folding. If the initial layer-parallel-short-

ening is insignificant, then the estimate of bulk strain, RTotal,

can be made by multiplying the strains due to buckling and

flattening, i.e. RTotalZRBRF.
2.1. Application

The destraining of class 1C fold, based on the principle of

restoring orthogonal relationship between isogons and their
Fig. 1. Destraining methodology. (a) Image of a class 1C fold, and a

reference circle. d—angle between isogon (i) and tangent at any given angle

of the limb dip (a). Selection of these objects displays a set of eight handles

as the squares, 1–8. (b) Destraining is achieved by pulling the handle-4

towards the right until the orthogonal relationship between isogons and

their respective tangents is restored. The reference circle in (a) transforms

into the reciprocal strain ellipse of axial ratio RF in (b). lz and lx—principal

quadratic elongations.
respective tangents, is best applied using any common

graphic software, e.g. CorelDRAW, Corel Photo-Paint,

Adobe Illustrator or Smartdraw. The two limbs of any given

fold can be analyzed together, or separately, depending

upon the presence, or the lack, of perfect mirror image

symmetry across the axial trace. We first consider a simple

situation where the X–Z plane is profile plane and the X-axis

parallels axial trace on profile plane of class 1C fold. These

simplifying assumptions are realistic because many natural

examples of the class 1C folds show a parallelism between

axial trace and cleavage trace on profile plane. These class

1C folds, characterized by the orthogonal relationship

between the isogon and the tangent at hinge points, can be

destrained as follows:

(i) Import the digital or scanned image of profile section

of the given fold into a graphic software, say

CorelDRAW. Rotate the fold until its axial trace

becomes vertical.

(ii) Draw two or three isogons and their respective

tangents at convenient angles of the limb dip

(Fig. 1a). In principle, only one pair of tangent and

isogon at an angle of the limb dip, 90OaO0, is

necessary. Also, draw a reference circle near the fold

(Fig. 1a).

(iii) Group all objects, namely, the given fold, the

tangent lines, the isogons and the circle. Select the

grouped objects using the pick tool. This operation

displays a set of eight handles, numbered 1–8 in

Fig. 1a.

(iv) Drag the handle-4 horizontally across the axial trace

until all the isogons become perpendicular to their

respective tangents. The shape of the given fold now

restores back to class 1B geometry and the circle,

drawn in step-(ii) (Fig. 1a), transforms into the

reciprocal strain ellipse of axial ratio RFZO(lz/lx),

where lz and lx are the principal quadratic

elongations (Fig. 1b).

Alternatively, the destraining can also be achieved by

dragging any one of the handles numbered 2, 6 or 8 in

Fig. 1a.

We now consider the situation of oblique-flattening,

where a class 1B fold assumes class 1C geometry due to

flattening in such a manner that neither of the principal

directions of strain parallels axial trace on profile plane

(Hudleston, 1973a; Srivastava and Srivastava, 1988). In

such class 1C folds, the isogons and the tangents at the hinge

points neither display an orthogonal relationship nor parallel

the principal directions of strain. Of the two orthogonal pairs

of the isogons and the tangents, which may occur at limbs of

the obliquely-flattened parallel folds (I–T and I 0–T 0 in

Fig. 2a), the identification of any one pair is sufficient for

knowing the principal directions of strain. The procedure for

the estimation of flattening strain and the restoration of



Fig. 2. (a) Profile section of an obliquely-flattened class 1C fold along with isogon–tangent pairs at different points. The two isogon–tangent pairs, I–T and

I 0–T 0, showing orthogonal relationships, parallel the principal directions of strain. (b) I is made vertical by rotating the objects in (a). Circle—reference circle.

Black squares—eight handles, 1–8, which appear on selection of the grouped objects. (c) Restored fold of class 1B geometry. RF—axial ratio of the reciprocal

strain ellipse.
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pre-flattening shape of obliquely-flattened parallel folds is

as follows:

(i) Import the image of profile section of the given class

1C fold into a graphic software, e.g. CorelDRAW,

and draw isogon–tangent pairs at different angles of

the limb dip on both limbs. Decipher principal

directions of the flattening strain along the isogon

and the tangent that exhibit an orthogonal relationship

(I–T and I 0–T 0 in Fig. 2a). Draw a reference circle near

the fold. Group and rotate these objects to make the

isogon, I, or the isogon I 0 vertical (Fig. 2b).

(ii) Use the pick tool and select the grouped objects to

display eight handles, namely, 1–8 in Fig. 2b. Drag

the handle-4 towards right until all the isogons

retrieve perpendicular relationship with their respect-

ive tangents (Fig. 2c). Alternatively, the orthogonal

relationship between isogons and their respective

tangents can also be retrieved by dragging any one of
Fig. 3. Isogons and tangents on the profile sections of the six folds tested in
the handles numbered 2, 6 or 8 in Fig. 2b. This

operation restores the class 1B geometry of the fold

and transforms the reference circle into the reciprocal

ellipse of axial ratio, RFZO(lz/lx).
3. Examples

The proposed destraining method is tested on the profile

sections of a large number of published and unpublished

folds. Four examples of natural folds presented here are: (i)

a reclined fold, plunging at 608 towards NNW, and traced by

an aplite vein in the Precambrian migmatite complex near

Masuda (N26807 0: E74832 0), northwestern India (Fig. 3a),

(ii) a fold in the sandstone layer, enclosed in the shale beds

in the Proterozoic Vindhyan sedimentary sequence, exposed

near Bassi Railway station (N25801 0: E74845 0), north-

western India (Fig. 3b). This fold plunges at 308 towards
this study. (a)–(d) Natural folds. (e) and (f) Computer simulated folds.
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3278 and its axial plane dips at 768 towards 2468, (iii) a part

of the folded pegmatite vein in the pelitic Moine rocks,

Scotland (Fig. 3c taken from fig. 11A in Hudleston (1973c)),

and (iv) antiformal part of the fold in the Precambrian

gneisses of Gjeroy, Nordland, Norway (Fig. 3d taken from

fig. 2 in Lisle (1992)). In addition to these four examples of

natural folds, we have also tested the efficacy of the new

method on two computer-simulated folds (Fig. 3e and f)

taken from fig. 6A and B in Dietrich (1969).

In the most comprehensive account of fold analysis

published to date, Hudleston (1973c) shows that the

magnitude of flattening on opposite limbs of folds could

be somewhat different (Treagus and Treagus, 1981;

Treagus, 1982). To minimize errors that may arise due to

the inhomogeneity in flattening strain in different parts of

folds, we analyze the left and right limbs of each fold

separately. The magnitude of flattening strain, expressed in

terms of axial ratio of the strain ellipse, and the pre-

flattening shapes of left and right limbs in each fold are

shown in Fig. 4a–f. For a critical comparison of the different

methods, the six folds treated by the destraining technique

are also analyzed by the t 0aKa, the f–a, and the inverse

thickness methods (Figs. 5–7). As shown in Table 1, results

obtained by the destraining technique are consistent with the

solutions yielded by other methods.
Fig. 4. (a)–(f) Destrained profiles of left and right limbs of six examples of folds sh

respective isogons is restored. Ellipses represent the reciprocal strain ellipse of a
4. Discussion

Similar to other existing methods for estimation of the

flattening strain, our method, too, is best suited to those class

1C folds that evolve by superimposition of flattening over

buckling (Ramsay, 1967, p. 411). Soft model experiments

by Hudleston (1973b) demonstrate that simultaneous

buckling and flattening is also an efficient mechanism for

the development of class 1C folds, particularly in situations

where the initial wavelength of folds is much larger than the

wavelength predicted by buckling equations and the

viscosity contrast is very low (Ramberg, 1963). The t 0aKa

and the f–a curves for the class 1C folds developed by

simultaneous buckling and flattening and those formed by

superimposition of flattening over buckling are, however,

similar, except at steep angles of the limb dip (fig. 11D and

E in Hudleston, 1973b; Treagus, 1982). Application of

Ramsay’s t 0a Ka and Hudleston’s f–a curves on the Class

1C folds, developed by simultaneous buckling and

flattening, yields solutions that are either close to, or slight

overestimates of, the actual flattening (Chatterjee, 1987). It

is evident that the estimates of the strain in those class 1C

folds that develop by simultaneous buckling and flattening,

e.g. folds in Fig. 3e and f, are at best approximate.

Errors in the t 0a Ka and the f–a methods are calculated in
own in Fig. 3a–f, respectively. Note that orthogonality between tangents and

xial ratio RF in each case.



Fig. 5. (a)–(f) t 0a Ka plots for left and right limbs of six folds shown in Fig. 3a–f, respectively. Error bars in all the figures are scaled off, as per the %-error scale,

shown in (a). Insets show the best-fit lines, obtained by linear transformation of t 0a Ka curves. XZcos2a, Y Z ðt 0aÞ
2, R2—regression coefficient. E—expected

value of the axial ratio, O(lz/lx), given by the square root of the intercept of the best-fit line (Eq. (A2)).
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terms of %-error in O(lz/lx) ratios at different angles of the

limb dip (Appendix). Figs. 5 and 6 show that both the

methods, t 0a Ka and f–a, tend to produce significant errors,

particularly at low (!158) and very steep (O608) angles of

the limb dip. There are two potential sources of these errors.

First, it is difficult to locate hinge points precisely in many

natural folds, and a small shift in location of the hinge points

may result in significant errors, particularly at low angles of

the limb dip. As our method does not require locating hinge

points, it is free from these errors. Second, in many folds, it

is difficult to draw the precise tangents at steep angles of

the limb dip (O608) due to small changes in curvatures near

the inflection points. Owing to these limitations, the t 0a Ka

and the f–a curves yield optimum solutions by fitting

the data points that correspond to the limb dips between 15

and 608.
Although %-errors in O(lz/lx) ratios at individual angles

of the limb dip are difficult to calculate in the inverse

thickness method, it is evident from Fig. 7 that 1/tKa polar

plots lie very close to the best-fit ellipse. The inverse

thickness method has an additional merit of being

independent of the assumption that the direction of

maximum elongation parallels the axial trace.

In order to evaluate errors in the destraining method,

several pairs of tangent and isogon are drawn on the given

class 1C fold (Fig. 3a–f). Because, in practice, all the

tangent–isogon pairs may not retrieve the orthogonality at

the same amount of destraining, the class 1C folds are

destrained to an optimal condition where most isogons

approach, or achieve, the orthogonal relationship with their

respective tangents (Fig. 4a–f). Errors in destraining method

can now be evaluated in terms of an estimator, namely,



Fig. 6. (a)–(f) f–a plots for left and right limbs of six folds shown in Fig. 3a–f, respectively. Error bars in all the figures are scaled off, as per the %-error scale,

shown in (a). Insets show the best-fit lines, obtained by linear transformation of f–a curves. XZtan a, YZtan(aKf). R2—regression coefficient. E—expected

value of O(lz/lx) given by square root of slope of the best-fit line (Eq. (A4)).
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j908Kdj, where d is the angle between tangent and isogon at

any given point on the destrained fold (inset in Fig. 8). This

angular deviation is found to be %58 in about 90% of the

total 68 measurements in the six-fold examples tested in this

study (Fig. 8).
5. Conclusions

The destraining method developed in this article is

relatively rapid, as it requires drawing of only two or three

isogon–tangent pairs. It also obviates the need for

measuring angles and thickness at several points on the

folded surface. As the method does not require locating

hinge points and drawing axial traces, it is also free from

uncertainties that may arise due to these geometrical

constructions. Whereas other methods only estimate
flattening strain, our method also restores the pre-flattening

shape of flattened parallel fold without any additional

geometrical or numerical steps. The quick and easy

restoration of the pre-flattening fold shape is useful because

it facilitates estimation of the buckling strain under the

condition of constant area deformation.
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Fig. 7. (a)–(f) The best-fit lines (Eq. (A6)) through X–Y plots for right and

left limbs of six folds shown in Fig. 3a–f, respectively. XZ{(1/t)cos a}2,

YZ{(1/t)sin a}2. E—expected value of axial ratio, O(lz/lx), given by

square root of slope of the best-fit lines. The best-fit ellipses, through the

1/tKa polar plots, are shown in each case.

Fig. 8. Histogram showing errors in destraining method. d—angle between

tangent and isogon. N—number of observations. SD—standard deviation.
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Appendix. Transformation of standard curves and

ellipses into straight lines

For the estimation of flattening by curve matching,

Ramsay (1967, p. 413) and Hudleston (1973a) give a set of

t 0aKa and f–a curves corresponding to different values of

O(lz/lx) ratios. One main limitation of these graphical

approaches is that curves for different magnitudes of

flattening strain tend to merge with each other, particularly

at low angles of the limb dip and small values of O(lz/lx)

ratio (Figs. 5 and 6). Another limitation, implicit in the
curve matching procedures, is that the t 0a or f data,

corresponding to different angles of the limb dip (a) in a

given fold, seldom fall on a unique curve (Figs. 5 and 6).

The strain determination from visual best-fit matching with

the standard curves is, therefore, qualitative and subjective.

In order to eliminate the subjectivity in visual fitting, we

transform the three equations that relate t 0a, f and inverse

thickness (1/t) to limb dip angle (a) in linear forms as

follows:

ðt 0aÞ
2 Z ðlz=lxÞC ð1Klz=lxÞcos2a

ðafter Ramsay; 1967; p: 412Þ (A1)

By substituting ðt 0aÞ
2ZY and cos2aZX, we can

rearrange Eq. (A1) as:

Y Z MX CC;

where M Z ð1Klz=lxÞ and C Z lz=lx:
(A2)

As shown by Hudleston (1973a), the following relation-

ship between f and a

tanðaKfÞ Z ðlz=lxÞtan a (A3)

can also be rearranged in a linear form as:

Y Z mX (A4)

where tan(aKf)ZY, tan aZX and lz/lxZm.

Similarly, the equation of ellipse, obtained in the inverse

thickness method of Lisle (1992), can also be transformed

into linear form as follows:

ðx2=a2ÞC ðy2=b2Þ Z 1 (A5)

Y Z AX CB (A6)

where y2ZY, x2ZX, K(b2/a2)ZA and b2ZB.

These simple linear transformations of Eqs. (A1), (A3)

and (A5) facilitate the drawing of the least square best-fit

lines through the points on the graphs plotted between X and

Y variables defined in Eqs. (A2), (A4) and (A6), respectively



Table 1

Comparison of the results obtained by application of different methods on the six folds shown in Fig. 3a–f. O(lz/lx)—axial ratio of the strain ellipse

representing flattening

Example O(lz/lx) ratio obtained by different methods

t 0a Ka method f–a method Inverse thickness

method

Destraining method

Fold 1 (Fig. 3a) Left limb 0.38 0.35 0.38 0.35

Right limb 0.31 0.29 0.31 0.30

Fold 2 (Fig. 3b) Left limb 0.54 0.39 0.51 0.53

Right limb 0.54 0.43 0.52 0.50

Fold 3 (Fig. 3c) Left limb 0.41 0.34 0.40 0.39

Right limb 0.45 0.45 0.46 0.46

Fold 4 (Fig. 3d) Left limb 0.62 0.50 0.62 0.61

Right limb 0.74 0.76 0.75 0.77

Fold 5 (Fig. 3e) Left limb 0.74 0.73 0.74 0.75

Right limb 0.77 0.76 0.77 0.76

Fold 6 (Fig. 3f) Left limb 0.51 0.42 0.51 0.50

Right limb 0.48 0.39 0.48 0.49

D.C. Srivastava, J. Shah / Journal of Structural Geology 28 (2006) 1–88
(insets in Figs. 5–7). Fig. A1 shows a set of nine straight

lines for lz/lx ratios, ranging from 0.1 to 0.9, that can be

obtained from Eqs. (A2) and (A4), respectively.

Errors in the t 0a Ka and the f–a methods are obtained in

terms of %-error in O(lz/lx) ratios for different a angles.

This %-error equals (jOKEj100)/E, where O and E are the

observed and the expected values of O(lz/lx) ratios,

respectively. The observed values (O) in the t 0aKa and

the f–a methods are obtained by substituting the values of

t 0a and f for different a angles, in Eqs. (A1) and (A3),

respectively. Similarly, the expected values (E) are given by

the square root of the intercept of the best-fit line (Eq. (A2))
Fig. A1. (a) and (b) Straight line transformations of the t 0a Ka and the f–a

curves for lz/lx ratios from 0.1 to 0.9, respectively.
in the t 0aKa method, and the square root of slope of the best-

fit line (Eq. (A4)) in the f–a method (insets in Figs. 5 and 6).
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